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We consider nuclear spin–lattice relaxation rate resulted from a diffusion equation for rotational wob-
bling in a cone. We show that the widespread point of view that there are no analytical expressions
for correlation functions for wobbling in a cone model is invalid and prove that nuclear spin–lattice relax-
ation in this model is exactly tractable and amenable to full analytical description. The mechanism of
relaxation is assumed to be due to dipole–dipole interaction of nuclear spins and is treated within the
framework of the standard Bloemberger, Purcell, Pound-Solomon scheme. We consider the general case
of arbitrary orientation of the cone axis relative the magnetic field. The BPP-Solomon scheme is shown to
remain valid for systems with the distribution of the cone axes depending only on the tilt relative the
magnetic field but otherwise being isotropic. We consider the case of random isotropic orientation of
cone axes relative the magnetic field taking place in powders. Also we consider the cases of their predom-
inant orientation along or opposite the magnetic field and that of their predominant orientation trans-
verse to the magnetic field which may be relevant for, e.g., liquid crystals. Besides we treat in details
the model case of the cone axis directed along the magnetic field. The latter provides direct comparison
of the limiting case of our formulas with the textbook formulas for free isotropic rotational diffusion. The
dependence of the spin–lattice relaxation rate on the cone half-width yields results similar to those pre-
dicted by the model-free approach.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Diffusometry and relaxometry is a traditional and well devel-
oped branch of NMR [1–16,18,17,19–26]. It is successfully applied
to many complex systems such as proteins and homopolypeptides
[2,3,27–30,15,31–37], tissues [38], liquid crystals [9,39,15], liquids
in porous glass [6,15,18], polymers [15], etc. Purely empirical way
to interpret relaxation behavior in complex systems is to introduce
a distribution of the correlation times, e.g., Cole–Davidson or Cole–
Cole ones (see e.g., [8,40–42] and refs. therein). Usually this is done
within the framework of the so-called model-free approach
[43,44,8,27,28,45,46,26].

At the same time many important theoretical issues still remain
open. For instance free isotropic rotational diffusion is well investi-
gated in details [47]. However it is applicable to a limited number of
cases. In practice one is encountered as a rule with some sort of re-
stricted rotational diffusion, e.g., wobbling in a cone with half-
width h0 treated rigorously by Wang and Pecora [48]. The latter
model is widely used for interpreting NMR relaxation data
[1,49,41,50,51]. It has become a widespread point of view that there
are no analytical expressions for correlation functions for wobbling
in a cone model [50,51,49]. For instance in [51] one can read:
ll rights reserved.
‘‘although hP2ðl̂ð0Þ � l̂ðtÞÞi cannot be evaluated analytically within
the diffusion in the cone model, . . .’’. Analogous statement is reiter-
ated in [49]: ‘‘Although there is no analytical expression for Gm (t) in
the case of this diffusion in a cone model, . . .’’. We do not agree with
this point of view and the aim of the present paper is to show that
nuclear spin–lattice relaxation in this model is exactly tractable and
amenable to full analytic description. Here it is pertinent to recall a
quotation from Ref. [51]: ‘‘To evaluate Gm (t) exactly, one must solve
time-dependent rotational diffusion equation subject to reflecting
boundary conditions at h0. Using this approach [48], one can ex-
press Gm(t) as an infinite sum of exponentials, with amplitudes
and time constants which are not closed-form functions of h0’’. Then
the authors of Lipari and Szabo [51] circumvent the problem by
constructing a simple but accurate closed-form approximation to
Gm(t). These results are sometimes referred to as quasi-exact [52]
while the approximation is referred to as multi-exponential in con-
trast to the mono-exponential obtained in [50]. In the present paper
we show that direct and stringent way to tackle the problem is nev-
ertheless quite feasible.

Thus in our opinion the quoted above assertion means not that
statements like ‘‘there is no analytical expression for Gm(t) in the
case of the diffusion in a cone model’’ are valid but rather that
exact analytic solution of the problem merely has not been
obtained yet. In this regard the notion of analyticity should be
refined. At the time the quotation from Ref. [51] was written only
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incomplete and erroneous Pal’s tables for the values of mm
n (the

roots of the derivative of the associated Legendre functions with
respect to the degree for the cone half-width h0) were available.
This fact indeed made the expressions containing mm

n to be ‘‘not
closed-form functions of h0’’, the formulas to be practically intrac-
table and as a consequence the resulting theory to be non-analytic.
However the situation was dramatically improved shortly after the
publication of [51]. The appearance in 1986 of the Bauer’s tables
for the values of mm

n as known functions of cosh0 [53] makes the
problem of treating mm

n conceptually equivalent to that of any
habitual function. One should consider mm

n as tabulated functions
of h0 just as for instance a trigonometric function of h0. In this sense
a formula containing mm

n ðh0Þ since 1986 is as well analytic as that
containing, e.g., sin(h0). In our opinion the issue about analytic
tractability of the correlation functions within the framework of
the diffusion in a cone model has long been in need for revaluation.

In the present paper we precisely follow the instruction from
the above quotation from Ref. [51]. We obtain analytic expressions
for the exponentials from the infinite sum. Then with the help of a
computer and Bauer’s tables the problem of calculating the Gm(t),
the corresponding spectral densities and finally the spin–lattice
relaxation rate becomes a routine though tedious procedure. We
carry out these calculations for representative set of model param-
eters and various distributions of the cone axis relative the labora-
tory fixed frame (external magnetic field) and plot spin–lattice
relaxation rates. The dependencies obtained exhibit rich variety
of interesting non-monotonic behavior. Our rigorous quantum-
mechanical treatment has a lucid classical analogy. The latter sug-
gests some physical interpretation of the phenomenon. Also we
find that our results are similar to those predicted by the model-
free approach. Thus in our opinion the problem of calculating the
correlation functions and spin–lattice relaxation rates within the
framework of diffusion in a cone model gets full analytic solution.
The same is true for spin-spin relaxation rate though this value is
not addressed in the present paper to save room.

The approach is discussed mainly for practically important case
of an isolated two-spin system comprising a hetero-nuclear pair of
non-identical spins, e.g., 15N–H in protein backbone or 13C–H in
protein side chains. However the results for homo-nuclear spin
pair are also presented for the sake of completeness. For wobbling
in a cone we can extend the cone half-width h0 up to the limit of
isotropic rotation h0 ? p to verify the coincidence of the results ob-
tained with the known formulas. Only for the artificial potential of
wobbling in a cone the equation for restricted rotational diffusion
can be solved in a stringent way without any approximation. For
no other non-trivial model such exact treatment is possible. Thus
the results of rigorous treatment of the rotational diffusion equa-
tion for wobbling in a cone can serve as a touchstone for approxi-
mations by necessity invoked to in the case of more realistic
potentials, such as, e.g., a harmonic one. In this regard the wob-
bling in a cone model is distinguished in the universe of models
for restricted rotational motion. All other models require severe
approximations and so long as the wobbling in a cone model is
treated approximately it is merely one among many others. But
as soon as this model is treated rigorously it takes an outstanding
position of the exactly solvable one. Namely this fact motivates our
attempt to revisit the investigation of the thirty years old problem
of applying the Wang–Pecora model to NMR.

We discuss the possible manifestation of the deviations of rigor-
ous results for the spin–lattice relaxation rate from those of the
approximate approach [43,51] in the experiment. The require-
ments for the possibility of observing the above mentioned
non-monotonic behavior in the experiment are found to be rather
severe. Thus we anticipate that it can manifest itself provided it is
sought purposefully and special concern is paid to the require-
ments. In these particular experimental situations the rigorous
quantum-mechanical treatment developed in the present paper
is expected to be more accurate compared with the approximate
one of Lipari and Szabo [43,51]. By present no such experiments
have been carried out. The rigorous treatment of the diffusion in
a cone model enables one to reveal very subtle peculiarities in
the behavior of the spin–lattice relaxation rate. That is why to ver-
ify them reliably in the experiment its special settings up should be
deliberately devised. The advantage of the present approach com-
pared with the approximate one lies mainly in the fact that the
resulting theoretical description is completely coherent, i.e., results
of the quantum-mechanical treatment agrees with those of its clas-
sical analogy and with those of Lipari and Szabo [43,51]. In our
opinion such full picture enables one to gain more penetrating into
the diffusion in a cone model and its possibilities to describe nucle-
ar spin–lattice relaxation.

The paper is organized as follows. In Section 2 the diffusion
equation for restricted rotational wobbling in a cone is used to de-
rive the joint probability density function. In Section 3 the latter is
used to obtain the spectral densities of correlation functions for di-
pole–dipole interaction within the framework of the standard
Bloemberger, Purcell, Pound (BPP)-Solomon scheme. Sections 4
and 5 deal with the particular case that the cone axis is directed
along the magnetic field. In Section 4 the spin–lattice relaxation
rate for hetero-nuclear spin pair is obtained. In Section 5 that for
homo-nuclear spin pair is obtained. In Section 6 the general case
of arbitrary orientation of the cone axis relative the magnetic field
is considered. These results are applied to the case of isotropic ran-
dom orientation (unweighted average) of cone axes relative the
laboratory fixed frame. Also a model example of predominant ori-
entation of cone axes along or opposite the magnetic field and that
of their predominant orientation transverse to the magnetic field
are considered. In Section 7 the results are discussed and the con-
clusions are summarized. In Appendix A some known mathemati-
cal formulas are collected for the convenience of the reader. In
Appendix B some technical details of calculations are presented.
In Appendix C the classical analogy of the quantum-mechanical
treatment is considered.

2. Rotational diffusion in a cone

We choose a laboratory fixed frame so that its z axis of the
Cartesian frame x, y, z is directed along the constant magnetic field.
The random functions F(q) of relative positions of two spins speci-
fied below (see (14)) are defined in the corresponding spherical
frame h, / given by the polar angle h (counted from the z axis)
and azimuthal one /. We consider a general case that the cone axis
is tilted at an angle w relative the magnetic field. We direct the z0

axis of the dashed Cartesian frame x0, y0, z0 along the cone axis.
The correlation function for wobbling in this cone we define in
the corresponding spherical frame h0,/0 given by the polar angle
h0 (counted from the z0 axis) and azimuthal one /0. Following Wang
and Pecora [48] we consider a rod with the orientation specified by
a unit vector û directed along its axis with spherical polar coordi-
nates X0 = (h0,/0). In accordance with Ref. [47] we following Debye
assume that the rotation of the rod can be considered as that of the
hard sphere with radius a (a is the length of the rod) in a medium
with viscosity g. For the ordinary diffusion in a cone model the rod
is allowed to diffuse freely within an empty cone with a maximum
polar angle h0 = h0. The symmetry axis of the cone is taken to be the
z0 axis. For the diffusion in a cone model, the polar angle is re-
stricted (0 6 h0 6 h0) but the azimuthal angle is not (0 6 /0 6 2p).

Our aim is to consider ordinary diffusion for rotational motion
in a cone. The probability density for finding the rod oriented in
û at time t, i. e., Wðû; tÞ, obeys the DE for rotational motion

@Wðû; tÞ
@t

¼ DDWðû; tÞ ð1Þ
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where D is the diffusion coefficient (DC) for rotation and D is the
angular part of the Laplace operator in polar spherical coordinates

D ¼ 1

sin2 h0
sin h0

@

@h0
sin h0

@

@h0

� �
þ @

2

@
/02

" #
ð2Þ

The DC for rotation D has the dimension cm2/s and is given by
the Stokes formula

D ¼ kBT
8pa3g

ð3Þ

where kB is the Boltzman constant and T is the temperature.
Following Wang and Pecora [48] we write the solution of (1) as

follows:

Wðû; tÞ ¼X1
n¼1

X1
m¼�1

exp �mm
n mm

n þ 1
� �

Djtj
� �

Y ðmÞ
�

mm
n
ðX0ð0ÞÞY ðmÞmm

n
ðX0ðtÞÞ ð4Þ

where Y ðmÞmm
n
ðX0Þ is the generalized spherical harmonics of degree mm

n

[48], the symbol ⁄ indicates the complex conjugate and the values
of mm

n are determined by the boundary conditions on h0 defined by
our diffusion in a cone model. The boundary condition says that
there is no net change of the probability density at the boundary
of the cone, i.e.,

@Wðû; tÞ
@h0 h0 ¼ h0

���� ¼ 0 ð5Þ

The values mm
n are known functions of cosh0 [48,53]. They satisfy

the requirement m�m
n ¼ mm

n . The index n is defined such that
mm

1 < mm
2 < mm

3 < � � � for any m. The detailed calculations of mm
n are

presented in the tables [53]. The values of mm
n for n > 1 increase

sharply with the decrease of the confining volume.
The solution (4) is subjected to the initial condition

Wðû;0Þ ¼ dðX0 �X0ð0ÞÞ ¼ dðcos h0 � cos h0ð0ÞÞdð/0 � /0ð0ÞÞ ð6Þ

The joint probability of finding the rod with orientation ûð0Þ in
solid angle dX0(0) at time 0 and ûðtÞ in dX0(t) at time t can be writ-
ten as

pðX0ðtÞ; t; X0ð0Þ;0Þ ¼ 1
2pð1� cos h0Þ

�

X1
n¼1

X1
m¼�1

exp �mm
n mm

n þ 1
� �

Djtj
� �

Y ðmÞ
�

mm
n
ðX0ð0ÞÞY ðmÞmm

n
ðX0ðtÞÞ ð7Þ

The latter satisfies the normalization conditionZ
cone

Z
cone

pðX0ðtÞ; t; X0ð0Þ; 0ÞdX0ðtÞdX0ð0Þ ¼ 1 ð8Þ

where the angular integrals are taken only over the volume of the
cone.

3. NMR framework for rotational diffusion

At the beginning of this Sec. we recall the main facts from the
general theory of spin–lattice relaxation by dipole–dipole interac-
tion suggested by BPP and developed by Solomon [54]. The BPP-
Solomon scheme is substantiated by more stringent Redfield’s the-
ory (see [47] for detailed presentation). This scheme is developed
in the frame whose z axis is directed along the constant magnetic
field. For the case of identical spins I the contribution to the spin–
lattice relaxation rate constant due to rotational diffusion with the
spectral density at a Larmor frequency xL of the correlation func-
tion for spherical harmonics has the form (see VIII.76 in [47])

ð1=T1Þrotat ¼
3c4�h2IðI þ 1Þ

2
fJð1ÞðxLÞ þ Jð2Þð2xLÞg ð9Þ
where c is the gyromagnetic ratio of the nucleus, I is their spin and ⁄
is the Planck constant. For non-identical spins I and S we have four
equations (see VIII.88 in [47])

1=TII
1

	 

rotat
¼ c2

I c
2
S �h2SðSþ 1Þ

� 1
12

Jð0Þ xI
L �xS

L

� �
þ 3

2
Jð1Þ xI

L

� �
þ 3

4
Jð2Þ xI

L þxS
L

� �� �
and

1=TIS
1

	 

rotat
¼ c2

I c
2
S �h2IðI þ 1Þ

� � 1
12

Jð0Þ xI
L �xS

L

� �
þ 3

4
Jð2Þ xI

L þxS
L

� �� �
ð10Þ

Here only two equations are written out explicitly because the
other two can be obtained from them by mere changing of indexes
[47]. To find the spectral densities J(0)(x),J(1)(x) and J(2)(x) we
need to know the correlation functions G(i)(t) where i = 0, 1, 2.

As was stressed in the previous section we set h0 and /0 to be po-
lar angles defining the direction of the axis connecting protons and
W(h0,/0, t) = W (X0, t) to be the probability of the orientation of this
axis in the direction X0 at time t. In the general case the axis of the
cone can be tilted relative the magnetic field (z axis of the labora-
tory fixed frame) at an arbitrary angle w. That is why at application
to a realistic system the correlation function of internal motion in
the cone hF(i)(0)F(i)(t)iinternal has to be averaged over the orienta-
tions of cone axes with some overall distribution of the angles
f(w) characterizing the system of interest. That is the correlation
function G(i)(t) whose spectral densities are to be substituted into
(9) or (10) has the form

GðiÞðtÞ¼hhFðiÞð0ÞFðiÞðtÞiinternalioverall¼
1
2

Z p

0
dw sinw f ðwÞhFðiÞð0ÞFðiÞðtÞiinternal

ð11Þ

To put it differently we assume that the distribution function
f(w,k,x) (where w, k, x are Euler angles for rotation of the dashed
Cartesian frame x0, y0, z0 relative the laboratory fixed one x,y,z) de-
pends only on the Euler angle w, i.e., f(w,k,x) � f(w). It will be
shown in Section 6 that only in this case the overall averaging pro-
vides the absence of cross-correlational functions with q – q0, i.e.,

hhFðqÞð0ÞFðq0 ÞðtÞiinternalioverall ¼ dqq0G
ðqÞðtÞ ð12Þ

where dnm is the Kronecker symbol. The latter requirement is crucial
for the validity of the BPP-Solomon scheme [47]. Further we con-
sider four particular cases.

(a). The cone axis is directed along the magnetic field for all
cones in the system. It means that f(w) = d(w) where d(x) is
a Dirac d-function (see Appendix B for technical details). This
case is of little practical significance. However it provides
direct comparison of the limiting case of our results with
the textbook formulas from Ref. [47]. Thus it serves as a test
for the validity of the present approach from the theoretical
side. Besides the formulas obtained in this case without
superfluous complexities are further used in more involved
cases as building blocks. That is why we denote the correla-
tion functions G(i)(t) for this case as basic ones
g(i)(t) � G(i)(t)f(w)=d(w). This case is considered in details in
Sections 4 and 5.

(b). For the particular case of random isotropic distribution
(unweighted average) of cone axes relative the magnetic
field we have f(w) = 1. This case is considered in Section 6.

(c). As an example of the case for the cone axes to be predomi-
nantly oriented along or opposite the magnetic field we con-
sider the model function f(w) = 3cos2w. This case is
considered in Section 6.
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(d). As an example of the case for the cone axes to be predomi-
nantly oriented transverse to the magnetic field we consider
the model function f(w) = 3/2sin2w. This case is considered
in Section 6.

From now and up to the end of Section 5 we consider the case
a)., i.e., f(w) = d(w) where d(x) is a Dirac d-function. In this case each
cone axis is directed along the magnetic field and we need not dis-
tinguish the dashed Cartesian frame x0, y0, z0 from the laboratory
fixed one x, y, z. To retain the uniformity of designations for corre-
lation function of wobbling in a cone we further use the dashed
Cartesian frame and correspondingly the dashed spherical frame
h0, /0. We start from the general expression for the correlation func-
tions of arbitrary order (see VIII.13 in [47]) that in our case takes
the form

gðiÞðtÞ � GðiÞðtÞf ðwÞ¼dðwÞ ¼ hF
ðiÞð0ÞFðiÞðtÞiinternal

¼
Z

cone

Z
cone

FðiÞ
� ðX0ðtÞÞFðiÞðX0ð0ÞÞpðX0ðtÞ; t; X0ð0Þ;0Þ

� dX0ðtÞdX0ð0Þ ð13Þ

where i = 0, 1, 2 and the angular integrals are taken only over the
volume of the cone. We need the correlation functions g(0)(t),
g(1)(t) and g(2)(t) in order to substitute their spectral densities in
(9) or (10). For our case of dipole–dipole interaction of two spins
separated by the distance b they are defined by random functions
F(0), F(1) and F(2) [47] whose relationship with associated Legendre
functions PðqÞ2 cos hð Þ is known (see, e.g., Appendix C. in [55])

Fð0ÞðXÞ ¼ 1� 3 cos2 h

b3 ¼ � 2

b3 Pð0Þ2 ðcos hÞ

Fð1ÞðXÞ ¼ sin h cos h expði/Þ
b3 ¼ 1

3b3 Pð1Þ2 ðcos hÞ expði/Þ

Fð2ÞðXÞ ¼ sin2 h expð2i/Þ
b3 ¼ 1

3b3 Pð2Þ2 ðcos hÞ expði2/Þ ð14Þ

We stress once more that in our particular case f(w) = d(w) the
F(i)(X) in the laboratory fixed frame are identical to F(i)(X0) in the
dashed (cone-related) frame to be substituted in (13).

Now we have to substitute (7) and (14) into (13). We denote

l ¼ cos h0 ð15Þ

so that l0 = cosh0 and introduce the associated Legendre functions
PðmÞmm

n
ðlÞ

Y ðmÞmm
n
ðX0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pHðmÞn

s
expðim/0ÞPðmÞmm

n
ðlÞ ð16Þ

which satisfy the orthogonality properties

Z 1

l0

dl PðmÞmm
n1
ðlÞPðmÞmm

n2
ðlÞ ¼ HðmÞn1

dn1 ;n2 ð17Þ

where dn,m is the Kronecker symbol (dn,m = 1 if n = m and dn,m = 0
otherwise).

Making use of 1.12.1.12 and 1.12.1.9 from Ref. [56] (see Appen-
dix A) respectively we obtain after straightforward calculations

gð1ÞðtÞ¼1þl0

b6

X1
n¼1

exp �m1
n m1

nþ1
� �

Djtj
� � 1

Hð1Þn

� 1

m1
nþ3

� �2 m1
n�2

� �2 m1
nþ3

� �
l2

0�1
� �

Pð1Þm1
n
ðl0Þ�m1

nl0Pð1Þm1
nþ1
ðl0Þ

n o2

ð18Þ
and

gð2ÞðtÞ ¼ ð1� l0Þ
2ð1þ l0Þ

3

b6

X1
n¼1

exp �m2
n m2

n þ 1
� �

Djtj
� � 1

Hð2Þn

� 1

m2
n þ 3

� �2 m2
n � 2

� �2 Pð3Þm2
n
ðl0Þ

n o2
ð19Þ

The calculation of G(0)(t) requires the formula from Ref. [48]

K0
n¼
Z 1

l0

dl ð3l2�1ÞPð0Þm0
n
¼4z0 1�6z0þ6z2

0

� �
F �m0

n;m
0
nþ1;2;z0

� ��
þ3z0ð1�2z0ÞF �m0

n;m
0
nþ1;3;z0

� �
þ2z2

0F �m0
n;m

0
nþ1;4;z0

� ��
ð20Þ

where

z0 ¼
1� l0

2
ð21Þ

and F(a,b;c;x) is a hypergeometric function [57]. Making use of (20)
we obtain

gð0ÞðtÞ ¼ 1

ð1� l0Þb
6

X1
n¼1

exp �m0
n m0

n þ 1
� �

Djtj
� � 1

Hð0Þn

K0
n

n o2
ð22Þ

We denote

sðmÞn ¼ 1
mm

n mm
n þ 1

� �
D

ð23Þ

where m = 0,1,2. We obtain for the basic spectral densities j(0)(x),
j(1)(x) and j(2)(x) of g(0)(t), g(1)(t) and g(2)(t) respectively

jð0ÞðxÞ ¼ 2

ð1� l0Þb
6

X1
n¼1

sð0Þn

1þ xsð0Þn

	 
2

1
Hð0Þn

K0
n

n o2
ð24Þ

and

jð1ÞðxÞ¼ 2

b6

X1
n¼1

sð1Þn

1þ xsð1Þn

	 
2

1
Hð1Þn

� ð1þl0Þ
m1

nþ3
� �2 m1

n�2
� �2 m1

nþ3
� �

l2
0�1

� �
Pð1Þm1

n
ðl0Þ�m1

nl0Pð1Þm1
nþ1
ðl0Þ

n o2

ð25Þ
and

jð2ÞðxÞ ¼ 2

b6

X1
n¼1

sð2Þn

1þ xsð2Þn

	 
2

� ð1� l0Þ
2ð1þ l0Þ

3

Hð2Þn m2
n þ 3

� �2 u2
n � 2

� �2 Pð3Þm2
n
ðl0Þ

n o2
ð26Þ

These spectral densities enable us to calculate any of the spin–
lattice relaxation rates (9) and (10) for the particular case that the
cone axis is directed along the magnetic field.

We denote the correlation time s and the rotational correlation
time srotat

s ¼ 8pa3g
kBT

srotat ¼
4pa3g
3kBT

¼ s
6

ð27Þ
4. Spin–lattice relaxation rate for nuclear pair with non-
identical spins

For the particular case that the cone axis is directed along the
magnetic field we have for the spectral densities to be substituted
in (9) and (10) are: J(0)(x) � j(0)(x), J(1)(x) � j(1)(x) and
J(2)(x) � j(2)(x) where j(0)(x), j(1)(x) and j(2)(x) are given by
(24)–(26). It is worthy to note that if we identify S with, e.g., 15N
from a nuclear pair of non-identical spins 15N–H then we actually
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need only the formula for 1=TII
1

	 

rotat

(see (10)) for the analysis of
experimental data. That is why further we restrict ourselves only
with explicit writing out the formula for this quantity. The substi-
tution of (24)–(26) into (10) yields
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This formula describes the spin–lattice relaxation rate from re-
stricted rotational diffusion in a cone for the particular case of the
cone axis to be directed along the magnetic field. The series in this
formula is well convergent. That is why in practice it is sufficient to
restrict oneself only by several initial terms in it.

5. Spin–lattice relaxation rate for nuclear pair with identical
spins

For the case of identical spins the substitution of (24)–(26) into
(9) yields
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It will be shown later that in the limit of isotropic (h0 ? p) rota-
tional diffusion this formula yields the well known result VIII.105
from Ref. [47].

6. Arbitrary orientation of the cone axis relative the magnetic
field

In the general case of arbitrary tilted cone axis relative the mag-
netic field we need two frames (see Sections 2 and 3). The labora-
tory fixed frame has the z axis directed along the magnetic field
while the dashed (cone-related) frame has the z0 axis directed along
the cone axis. The angle between the cone axis and the magnetic
field is w. In (13) we carry out internal averaging over the rotation
in the cone in the dashed (cone-related) frame. That is why we need
the transformation of the F(i)(X) given by (14) in the laboratory
fixed frame into those in the dashed (cone-related) frame.

As is well known a rotation of one frame relative the other is
most conveniently described by Euler angles. We choose the angle
w as the first Euler angle (0 6 w 6 p). We denote two other Euler
angles as k (that between the x-axis and the so-called N-line
(node-line) 0 6 k 6 2p) and x (that between the N-line and the
x0-axis 0 6x 6 2p). The formula for transformation of the general-
ized spherical harmonics at transition from the frame {/,h} to that
{/0,h0} obtained by rotation of the z axis by the angle w is [58,59]

PðqÞ2 ðcoshÞexpðiq/Þ¼
Xn
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ðsÞ
2 ðcosh0Þexp is/0 þ iqkþ isx½ � ð30Þ
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One can see that if the distribution function f(w,k, x) character-
izing a system of interest depends only on the angle w, i.e.,
f(w,k,x) � f(w) then at overall averaging

h� � � ioverall ¼
1

8p2

Z p

0
dw
Z 2p

0
dk
Z 2p

0
dx sin w f ðw; k;xÞ . . . ð32Þ

we have the factorsZ 2p

0
dk exp½iðq� q0Þk� ¼ 2pdqq0 ð33Þ

Z 2p

0
dx exp½iðs� s0Þx� ¼ 2pdss0 ð34Þ

It is namely the identity (33) that provides the applicability of
the formula (12). The latter is crucial for the validity of the BPP-
Solomon scheme [47]. The overall averaging takes the form
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1
2
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and total (overall + internal) averaging is given by (11) in this case.
The function f(w) must be normalized so that
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Fig. 1. Spin–lattice relaxation rate for nuclear pair of identical spins from rotational
diffusion for the case of cone axes directed along the magnetic field (Eq. (29)) as the
function of the cone half-width h0 (in degrees) at different values of the Larmor
frequency: xLs = 10 (thin dots), xLs = 100.5, xLs = 1, xLs = 0.1 (thick dots). For the
case of free isotropic rotational diffusion (cone half-width h0 ? p) the textbook
value 0.333 . . . (i.e., formula VIII.106 from Ref. [47]) is obtained as it must be (see
(Eq. (44) and text below).
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After lengthy but straightforward calculations we obtain
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where j(0)(x), j(1)(x) and j(2)(x) are given by (24)–(26). In designa-
tions (27) the explicit form of the basic spectral densities j(0)(x),
j(1)(x) and j(2)(x) is
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For practical application of the theory we consider three cases.

1. For the particular case of random isotropic distribution
(unweighted average) of cone axes relative the magnetic field
we have f(w) = 1. In this case we obtain: hð2Þð0Þ ¼ 1=15; hð2Þð1Þ ¼
1=5; hð2Þð2Þ ¼ 4=5; hð1Þð0Þ ¼ 4=15; hð1Þð1Þ ¼ 8=15; hð1Þð2Þ ¼ 4=5; hð0Þð0Þ ¼ 2=5;
hð0Þð1Þ ¼ 4=15; hð0Þð2Þ ¼ 16=15.

2. As an example of the case for the cone axes to be predominantly
oriented along or opposite the magnetic field we consider the
model function f(w) = 3cos2w. In this case we obtain: hð2Þð0Þ ¼
1=35; hð2Þð1Þ ¼ 1=7; hð2Þð2Þ ¼ 44=35; hð1Þð0Þ ¼ 12=35; hð1Þð1Þ ¼ 28=35;
hð1Þð2Þ ¼ 20=35; hð0Þð0Þ ¼ 22=35; hð0Þð1Þ ¼ 12=35; hð0Þð2Þ ¼ 16=35.

3. As an example of the case for the cone axes to be predominantly
oriented transverse to the magnetic field we consider the model
function f(w) = 3/2sin2w. In this case we obtain: hð2Þð0Þ ¼ 3=35;
hð2Þð1Þ ¼ 8=35; hð2Þð2Þ ¼ 20=35; hð1Þð0Þ ¼ 8=35; hð1Þð1Þ ¼ 14=35; hð1Þð2Þ ¼
32=35; hð0Þð0Þ ¼ 10=35; hð0Þð1Þ ¼ 8=35; hð0Þð2Þ ¼ 48=35.

Making use of (41)–(43) and explicit values of hðqÞðiÞ for these
three cases enables us to calculate the spectral densities (38)–
(40) to be inserted in BPP-Solomon formulas (9) and (10). We do
not write out explicitly the corresponding expressions for the
spin–lattice relaxation rate to save room. However in the next
Sec. we plot the corresponding dependencies of spin–lattice relax-
ation rate for nuclear pair with non-identical spins for all three
cases.

7. Results and discussion

For 15N–H nuclear pair of non-identical spins, we identify S with
15N nucleus and I with H one. Thus cS = �2712 rad s�1 Gauss�1 and
cI = 26,753 rad s�1 Gauss�1 so that cS/cI = �0.101372. For 13C–H
nuclear pair cS = 6728 rad s�1 Gauss�1 so that cS/cI = 0.251486.
The righthand side in the formula (28) depends on the parameters
characterizing the nuclear pair (namely on the gyromagnetic ratios
cS and cI of our pair of non-identical spins). To plot the spin–lattice
relaxation rate with the help of (28) one has to choose the partic-
ular nuclear pair explicitly. That is why to be specific we choose the
15N–H nuclear pair of non-identical spins. It should be mentioned
that both (28) and (29) have uncertainties at: h0 = p/4 because
m1

1 ¼ 2:0000; h0 = p/2 because m2
1 ¼ 2:0000; h0 = 3p/4 because

m1
2 ¼ 2:0000; h0 = 175� because m2

1 ¼ 2:0000. However these uncer-
tainties are isolated, and can be safely ignored.

In Fig. 1 the spin–lattice relaxation rate for identical spins ob-
tained with the help of (29) for the case of cone axes directed along
the magnetic field is depicted as a function of the cone half-width
h0 at different values of Larmor frequency. The value xLs = 0.1 for
the upper curve is within the range of validity of the extreme nar-
rowing limit xLs� 1. From this Fig. 1 can see that for the case of
isotropic (h0 = p) rotational diffusion in the limit of extreme nar-
rowing the corresponding curve tends to the value 0.333. . . Thus
the formula (29) yields

lim
h0!p
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ð44Þ

that taking into account (27) coincides with the well known for-
mula VIII.106 from Ref. [47]

1
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� �
rotat
¼ 2c4�h2

b6 IðI þ 1Þ4pga3

3kBT

In Fig. 2 the spin–lattice relaxation rate for non-identical spin pair
15N–H obtained with the help of (38)–(40) for the case of random iso-
tropic distribution (unweighted average f(w) = 1 taking place in
powders) of the cone axes relative the external magnetic field is de-
picted as a function of the cone half-width h0 at different values of

Larmor frequency. The reduced curves b6
= sc2

I c2
S �h2SðSþ 1Þ

	 
h i
1=TII

1

	 

rotat

for 13C–H nuclear pair are found to be very similar to

those for 15N–H one. For this reason data for 13C–H nuclear pair are
not presented to save room.

In Fig. 3 the dependence of the spin–lattice relaxation rate on
the cone half-width h0 for the case of non-identical spin pair
15N–H is depicted for different distributions of the cone axis rela-
tive the external magnetic field: for the case of cone axes directed
along the magnetic field (f(w) = d(w)); for the case of the cone axes
to be predominantly oriented along or opposite the magnetic field
(f(w) = 3cos2w that may be relevant for, e.g., liquid crystals); for the
case of random isotropic distribution (unweighted average f(w) = 1
taking place in powders); for the case of the cone axes to be pre-
dominantly oriented transverse to the magnetic field (f(w) = 3/
2sin2w that may be relevant for, e.g., liquid crystals).



Fig. 2. Spin–lattice relaxation rate for 15N–H nuclear pair of non-identical spins
from rotational diffusion for the case of random isotropic distribution (unweighted
average f(w) = 1 taking place in powders) of the cone axis relative the laboratory
fixed frame (external magnetic field) as the function of the cone half-width h0 (in
degrees) at different values of the Larmor frequency: xLs = 10 (thin dots),
xLs = 100.5,xL s = 1,xLs = 0.1 (thick dots).
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As is well known in liquids (for which isotropic rotation is rel-
evant) T1 ordinarily decreases with increasing viscosity, in some
cases reaching a minimum value after which it increases with fur-
ther increase in viscosity [47]. The variation of viscosity is caused
by temperature T. For ordinary isotropic rotation correlation times
are functions of temperature sn = s(g(T))[n(n + 1)]�1 (see VIII.97 in
[47]) and the spin–lattice relaxation rate (1/T1)rotat(s(T)) can have a
maximum as a result. In the present model we have one more op-
tion. Substitution of (27) into (23) yields

sðmÞn ¼ sðgðTÞÞ
mm

n mm
n þ 1

� � ð45Þ

where m = 0,1,2. Thus correlation times are functions of tempera-
ture and of the cone half-width h0 (via the values mm

n ). The results
obtained testify that variation of each of these parameters (T or
h0) can produce a maximum in the corresponding dependence of
the spin–lattice relaxation rate. The dependence in Fig. 1 exhibits
a maximum at h0 	 100�. Figs. 2 and 3 show similar maximums
for non-identical spin pair at h0 	 p/2. These maximums are similar
to those at h0 	 p/2 given by the model-free approach.

Indeed let us consider the most typical for practice case of the
model-free approach when the overall motion of a macromolecule
is considerably slower than the internal motion. In this case the
expression of the model-free approach for the relationship of the
spin–lattice relaxation rate with the order parameter S2 and effec-
tive correlation time se is given by Eq. (37) from [43]
Fig. 3. Spin–lattice relaxation rate for 15N–H nuclear pair of non-identical spins
from rotational diffusion as the function of the cone half-width h0 (in degrees) at
xLs = 0.1 for different distributions of the cone axis relative the laboratory fixed
frame (external magnetic field): for the case of cone axes directed along the
magnetic field (f(w) = d(w)); for the case of the cone axes to be predominantly
oriented along or opposite the magnetic field (f(w) = 3cos2w that may be relevant
for, e.g., liquid crystals); for the case of random isotropic distribution (unweighted
average f(w) = 1 taking place in powders); for the case of the cone axes to be
predominantly oriented transverse to the magnetic field (f(w) = 3/2sin2w that may
be relevant for, e.g., liquid crystals).
1
T1
¼ aS2 þ bseð1� S2Þ ð46Þ

where a and b are constants independent on spatial configuration
accessible for internuclear vector. For wobbling in a cone the rela-
tionship between the order parameter of the model-free approach
and the cone half-width h0 is given by Eq. (A3) from Ref. [43]

S ¼ 1
2

cos h0ð1þ cos h0Þ ð47Þ

while that for the effective correlation time is given by Eq. (A4) from
Ref. [43]

se ¼
1

Dwð1� S2Þ
cos2 h0ð1þ cos h0Þ2fln½ð1þ cos h0Þ=2�
n
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ð48Þ

where Dw is the diffusion coefficient. We denote

c ¼ b
aDw

ð49Þ

Then we obtain the dependence of the spin–lattice relaxation
rate on the cone half-width h0

1
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1
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4
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n
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The dependence of this spin–lattice relaxation rate on the cone
half-width h0 is depicted in Fig. 6 at several values of the parameter
c. One can see close qualitative similarity of the curves with our
results.

The BPP-Solomon scheme requires essential extent the isotropy
(but not total isotropy) for its validity. In Section 6 we show that in
application to rotational diffusion in a cone it remains valid for sys-
tems with a distribution of cone axes depending only on the tilt
relative the magnetic field but otherwise being isotropic. This
residual isotropy provides the requirement (33) that is necessary
for the absence of cross-correlational functions (12). The latter in
turn is crucial for the validity of the BPP-Solomon scheme. We con-
sider the aforesaid a so important issue that would like to reiterate
it in other words with complete definiteness. We develop the the-
ory for the general case of arbitrary orientation of the cone axis rel-
ative the magnetic field (laboratory fixed frame). We show that
when the cone axis is tilted at an arbitrary angle w to the magnetic
field but otherwise is oriented isotropically then at overall averag-
ing the crucial requirement for the validity of the Bloemberger,
Purcell, Pound-Solomon scheme (12) (that of the absence of
cross-correlational functions with q – q0) is retained. Thus we
explicitly prove the consistency of combination of the textbook for-
mulas for the BPP-Solomon scheme with rotational motion in a
cone.

Practical applications of our results depend on the choice of a
distribution function for overall averaging over all orientations of
the cone axis with respect to the laboratory fixed frame (over the
angle w). This distribution function f(w) is a characteristic of the
system of interest. Under the assumption of isotropic random ori-
entation of cone axes relative the laboratory fixed frame the results
obtained can be applied to powders. We consider this case of un-
weighted average over all orientations of the cone axis with re-
spect to the laboratory fixed frame (f(w) = 1) in Section 6 and
provide corresponding data for the spin–lattice relaxation rate in
Fig. 3. Also in Section 6 we consider a model example of predom-
inant orientation of the cone axis along or opposite the magnetic



Fig. 5. Spin–lattice relaxation rate for 15N–H nuclear pair of non-identical spins
from rotational diffusion in the cone at xL s = 0.1 as the function of the tilt angle w0

of the cone axis relative the magnetic field (corresponding to the distribution
function f(w) = d(w–w0)[cos (w0/2)]�1) for different values of the cone half-width:
h0 = 35� (thin line); h0 = 55�; h0 = 95�; h0 = 130�; h0 = 170� (thick line).
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field (f(w) = 3cos2 w) and that of their predominant orientation
transverse to the magnetic field (f(w) = 3/2sin2w). The results for
these cases may be relevant for, e.g., liquid crystals. For both of
these cases we also provide corresponding data for the spin–lattice
relaxation rate in Fig. 3. The particular case of the cone axis direc-
ted along the magnetic field (f(w) = d(w) where d(x) is a Dirac delta-
function) is of little practical significance. However this case pro-
vides direct comparison of the limiting case of our formulas with
the textbook formulas from Ref. [47]. Thus it serves as a test for
the validity of our approach from the theoretical side.

Fig. 3 shows that the results for practically relevant cases of spe-
cific distributions of cone axes relative the magnetic field are qual-
itatively similar to those for the model case of cone axes directed
along the magnetic field. However there is some quantitative dif-
ference. From Fig. 3 one can see that

1
T1

� �
f ðwÞ¼dðwÞ

<
1
T1

� �
f ðwÞ¼3 cos2 w

<
1
T1

� �
f ðwÞ¼1

<
1
T1

� �
f ðwÞ¼3=2 sin2 w

Thus the more is the contribution of the orientations of the cone
axes in the system transverse to the magnetic field (i.e., the more is
the probability of such orientations) the more efficiently spin–
lattice relaxation proceeds. This dependence is weak but well-
defined. To prove it explicitly we plot in Fig. 4 the dependence of
the spin–lattice relaxation rate on the tilt angle of the cone axis rel-
ative the magnetic field for the cone with the half-width h0 = 55� as
an example. This case corresponds to the distribution function
f(w) = d(w–w0)[cos(w0/2)]�1 (see Appendix B for technical details).
One can see that when the cone axis is transverse the magnetic
field the spin–lattice relaxation proceeds most efficiently. In
Fig. 5 such dependence is plotted for different values of the cone
half-width h0.

The rigorous quantum-mechanical treatment presented in the
main text of the paper does not allow simple physical interpreta-
tion of the results obtained. To attain the latter objective we invoke
to the results of the classical analogy presented in Appendix C.
Such simplified approach does not yield precise results but enables
us to get more clear physical perception of the phenomenon under
consideration. We conclude that the essence of the maximum in
the dependence of the spin–lattice relaxation rate on the cone
half-width h0 originates from two factors:

1. the angular dependence of the spin–lattice relaxation rate
Fig. 4.
from ro
the tilt
distribu
Larmor
(thin lin
1
T1
/ cos2 h sin2 h
and
2. the averaging of the spin–lattice relaxation rate over the rota-

tional diffusion in the cone with half-width h0
Spin–lattice relaxation rate for 15N–H nuclear pair of non-identical spins
tational diffusion in the cone with the half-width h0 = 55� as the function of
angle w0 of the cone axis relative the magnetic field (corresponding to the
tion function f(w) = d(w–w0)[cos (w0/2)]�1) for different values of the
frequency: xLs = 10�0.5 (thick line); xL s = 100.2; xLs = 100.9 ; xLs = 101.6

e).
1
T1

� �
cone

/ 1
1� cos h0

Z h0

0
dh sin h

1
T1

Combination of these two factors leads to the required non-
monotonic behavior (see Fig. 7). Regretfully further simplification
of the physical picture underlying the phenomenon seems hardly
possible. It is hampered namely by the fact that the phenomenon
can not be attributed to a single reason but originates from the
combination of two of them.

Thus the model yields an unexpected result: too much spatial
freedom is not good for spin–lattice relaxation rate. This result is
obtained from rigorous quantum-mechanical treatment, is loosely
supported by its rough classical analogy and besides is well corrob-
orated by the model-free approach. The restriction of free isotropic
motion (h0 = p) to smaller cone half-widths leads to the increase in
spin–lattice relaxation rate with a maximum in the region of
hmax

0 	 90—100
. Only further restriction of the cone semi-angle
to the values h0 < hmax

0 leads at last to efficient decrease of the
spin–lattice relaxation rate. We can reformulate the above men-
tioned physical interpretation of this phenomenon in other words.
The maximum arises at h0 	 hmax

0 because in this case the internu-
clear vector has maximal probability to be transverse the external
magnetic field. As one can see from Figs. 4 and 5 such orientation
maximizes the spin–lattice relaxation rate. Increase of h0 from hmax

0

to the limit of free isotropic motion (h0 = p) decreases the probabil-
ity for internuclear vector to be transverse the external magnetic
field and thus leads to the decrease of the spin lattice relaxation
rate. Taking into account that wobbling in a cone is the exactly
tractable model we can not attribute this result to any approxima-
tions. Also the model captures the effect of restriction for the mo-
tion in an adequate and non-trivial manner. Thus the phenomenon
can not be model dependent. We conclude that the phenomenon
should be of general character, i.e., any correct model of restricted
Fig. 6. Spin–lattice relaxation rate for the model-free approach (Eq. (50)) as the
function of the cone half-width h0 for different values of the dimensionless
parameter c (Eq. (49)): c = 50 (thick line); c = 70 ; c = 90 ; c = 110 (thin line).



Fig. 7. Angular dependence of the spin–lattice relaxation rate on the cone half-
width h0 for classical analogy of the rigorous treatment of diffusion in a cone model
(see Appendix C).
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rotational diffusion should exhibit a non-monotonic dependence of
the spin–lattice relaxation rate on the accessible space volume for
the internuclear vector. The maximum for this dependence should
take place for those configurations for which the probability of the
internuclear vector to be transverse the external magnetic field is
maximal.

This result can manifest itself in experiments where addition of
some substance creates efficient steric hindrance to rotating inter-
nuclear vector of the reporting nuclear spin pair. Its accessible space
volume initially (without this substance) ought to be large enough
so that one can approximate it by the limit of free isotropic motion
h0 ? p. Also one should take special concern that the additional
substance does not alter the micro-viscosity for the environment
of the reporting spin pair appreciably. It can be achieved if the size
of the molecules for the added substance is not small but rather
commensurable with those containing the reporting nuclear spin
pair. Only in this case one can obtain the required condition that
variation of the concentration C of the added substance touches
upon primarily mm

n ðCÞ via the accessible space (cone half-width)
while micro-viscosity remains mainly constant g(C) 	 const. Other-
wise we are in danger that variation of the correlation times

sðmÞn ¼ sðgðCÞÞ
mm

n ðCÞ mm
n ðCÞ þ 1

� �
is attributed namely to g(C) rather than to mm

n ðCÞ. In the latter case
one actually probes the dependence 1/T1 vs. micro-viscosity g(C)
with non-monotonic behavior of quite the same nature as that for
the usual dependence 1/T1 vs. temperature T stipulated by the
dependence g(T). Provided all precautions are taken into account
and the above condition is satisfied one may hope that the depen-
dence 1/T1 vs. cone half-width h0 can be probed in the experiment.
Then basing on the results obtained in the present paper (Figs. 1–3)
one can expect that the increase of the concentration of the addi-
tional substance should lead to the increase of the spin–lattice
relaxation rate up to a maximum with further decrease. The results
of our rigorous treatment will be more accurate for the description
of such experiments than those of the approximate approach
[43,51]. Indeed Fig. 6 shows that the latter predicts the maximum
strictly at one value of the cone half-width, namely at hmax

0 	 85
.
On the other hand Figs. 1–3 show that within the framework of
the rigorous treatment the position of the maximum is a variable
value from the range 80
 < hmax

0 < 180
. It depends on the type of
the nuclear spin pair (homo-nuclear or heter-onuclear), on the Lar-
mor frequency or more exactly on the value of xLs, etc. The depen-
dence of the maximum position on the type of the labeled atom
(15Nor 13C) is found to be very small. Thus we anticipate that the re-
sults of the present approach leave much more freedom for describ-
ing experimental data.

We conclude that wobbling in a cone is the exactly tractable
(i.e., amenable to full analytic treatment within the range of valid-
ity of BPP-Solomon scheme) model for description of the nuclear
spin–lattice relaxation rate. This fact makes it a unique one among
all other models for restricted rotational diffusion.
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Appendix A

Here we present two known mathematical formulas 1.12.1.12
and 1.12.1.9 for the associated Legendre function Pl

m ðxÞ from the ta-
ble of integrals [56]. The formula 1.12.1.12 is

Z
dx xð1� x2Þ�l=2Pl

m ðxÞ ¼
ð1� x2Þ�l=2

ðm� lþ 2Þðm� l� 1Þ
� ðm� lþ 2Þx2 � 1

� �
Pl

m ðxÞ
�

þðl� m� 1ÞxPl
mþ1ðxÞ

�
The formula 1.12.1.9 is

Z
dxð1� x2Þl=2Pl

m ðxÞ ¼
ð1� x2Þðlþ1Þ=2

ðm� lÞðmþ lþ 1Þ P
lþ1
m ðxÞ
Appendix B

The polar angle w at operations with the distribution function
f(w) imposes some peculiarities in treating the case of Dirac d-
function

f ðwÞ ¼ 1
cosðw0=2Þ dðw� w0Þ

We stress that the case of the cone angle oriented along the
magnetic field f(w) = d(w) considered in Sections 4–6 is a particular
case of this distribution function corresponding to the value w0 = 0.
First let us prove the normalization requirement (36). We have
(taking into account that d(2z) = d (z)/2)

1
2

Z p

0
dw sin w dðw� w0Þ ¼ 2

Z p

0
d

w
2

� �
sin

w
2

cos
w
2

d 2
w� w0

2

� �

¼
Z p=2

0
dx sin x cos x d x� w0

2

� �

¼ �
Z p=2

0
dðcos xÞ cos x d x� w0

2

� �

¼
Z 1

0
dy y d arccos y� w0

2

� �

¼
Z 1

0
dy y d y� cos

w0

2

� �
¼ cos

w0

2

This calculation serves as a model for operations at calculating
the values of hðnÞðmÞ in (37) with the distribution function
f(w) = d(w–w0)[cos(w0/2)]�1. The general rule takes the form

1
cosðw0=2Þ

Z p

0
dw sin w dðw� w0ÞqðwÞ ¼ 2qðw0Þ

where q(w) is an arbitrary function of w.At w0 = 0 we obtain

hð2Þð2Þ ¼ 2;hð1Þð1Þ ¼ 2 and hð0Þð0Þ ¼ 2 while hðnÞðmÞ ¼ 0 at m – n. Substitution
of these values into (38)–(40) yields J(2)(x) = j(2)(x),J(1)(x) = j(1)(x)
and J(0)(x) = j(0)(x) as it must be.
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Appendix C

The rigorous quantum-mechanical treatment described in the
text of the present paper does not enable us to gain insight in phys-
ical interpretation of the results obtained. To attain the latter
objective we present here its classical analogy that is much more
simple and not at all precise but nevertheless rather illustrative.
Let us consider the simplest case of two identical spins (nuclei)
with magnetic moments �l which we assume for simplicity to be
oriented along the external magnetic field H0 directed along the
axis z of the spherical frame so that �l ¼ l�ez. The internuclear vec-
tor (with the absolute value r) is tilted by the angle h relative the
external magnetic field. We denote �n the unit vector for internu-
clear one. Then the magnetic field produced by one spin in the
location of the other is

�h / 1
r3 ½�l� ð�l � �nÞ�n�

The spin–lattice relaxation rate for classical treatment of di-
pole–dipole interaction is given by the following expression (see,
e.g., Appendix E in [60]):

1
T1
¼ c2

Z 1

0
ds cosðxLsÞ½< hxð0ÞhxðsÞ > þ < hyð0ÞhyðsÞ >�

where c is the gyromagnetic ration and xL = cH0 is the Larmor
frequency.

For our diffusion in a cone model we have to average the latter
value over the rotational motion in the cone with half-width h0.
Thus we want to calculate the value

R1 �
1
T1cone

/ 1
1� cos h0

Z h0

0
dh sin h

1
T1

The unit vector �n in the spherical frame is

�n ¼ sin h cos /�ex þ sin h sin /�ey þ cos h�ez

so that

ð�l � �nÞ ¼ lð�ez � �nÞ ¼ l cos h

One can see that both hx / coshsinh and hy / coshsinh so that

1
T1
/ cos2 h sin2 h

The origin of the latter relationship can be also trivialized as fol-
lows. The energy for the dipole–dipole interaction of two magnetic
moments is

U / 3 cos2 h� 1

Then the force of interaction (this notion is quite viable in our
classical analogy of the quantum-mechanical treatment) is

F / dU
dh
/ cos h sin h

The spin–lattice relaxation rate is determined by the correlation
function of the force that yields the above relationship. Thus we
obtain that the angular dependence of the spin–lattice relaxation
rate on the cone half-width h0 is

R1 /
1

1� cos h0

Z h0

0
dh sin3 h cos2 h

Integration yields the final result

R1 /
2

15
ð1þ cos h0 þ cos2 h0Þ �

1
5

cos3 h0ð1þ cos h0Þ

This dependence is depicted in Fig 6.
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